

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

Inhaltsverzeichnis

1.	Vorwort	2
2.	Sicherheitshinweise	2
3.	Funktionsbeschreibung	3
4.	Montage	3
5.	Elektrischer Anschluss	4
6.	Einstellung des Schaltpunkts	6
7.	Wartung und Pflege	7
8.	Hinweise zur Fehlersuche	8
9.	Spezifikationen	9

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

1. Vorwort

Die Strömungswächter der Serie DUG zeichnen sich durch zuverlässige Funktion und einfache Bedienung aus. Um die Vorteile dieses Geräts in vollem Umfang nutzen zu können, bitten wir folgendes zu beachten.

Jede Person, die mit der Inbetriebnahme oder Bedienung dieses Geräts beauftragt ist, muss die Betriebsanleitung und insbesondere die Sicherheitshinweise gelesen und verstanden haben!

2. Sicherheitshinweise

2.1. Allgemeine Hinweise

Zur Gewährleistung eines sicheren Betriebs darf das Gerät nur nach den Angaben in der Betriebsanleitung betrieben werden. Bei der Verwendung sind zusätzlich die für den jeweiligen Anwendungsfall erforderlichen Rechts- und Sicherheitsvorschriften zu beachten. Sinngemäß gilt dies auch bei der Verwendung von Zubehör.

2.2. Bestimmungsgemäße Verwendung

Die Geräte der Serie DUG dienen der Überwachung von kontinuierlichen Durchflüssen von Flüssigkeiten. Jeder darüber hinaus gehende Gebrauch gilt als nicht bestimmungsgemäß. Sofern nicht anders angegeben, beziehen sich die Skalen der Geräte auf Wasser. Insbesondere Einsatzfälle, in denen stoßartige Belastungen auftreten (z.B. getakteter Betrieb), sollten vorher mit unserem technischen Personal besprochen und überprüft werden.

Die Geräte der Serie DUG dürfen nicht als alleiniges Mittel zur Abwendung gefährlicher Zustände an Maschinen und Anlagen eingesetzt werden.

Maschinen und Anlagen müssen so konstruiert werden, dass fehlerhafte Zustände nicht zu einer für das Bedienpersonal gefährlichen Situation führen können.

2.3. Qualifiziertes Personal

Die Geräte der Serie DUG dürfen nur von qualifiziertem Personal, das in der Lage ist, die Geräte fachgerecht einzusetzen, installiert werden. Qualifiziertes Personal sind Personen, die mit der Aufstellung, Montage, Inbetriebnahme und Betrieb dieser Geräte vertraut sind und die über eine ihrer Tätigkeit entsprechende Qualifikation verfügen.

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

3. Funktionsbeschreibung

Die Geräte der Serie DUG arbeiten nach dem Prinzip des Schwebekörper-Durchflussmessers. Durch die Strömung des Mediums wird ein Schwebekörper bewegt, dessen integrierte Magneten ein Magnetfeld erzeugen. Die Position des Schwebekörpers wird durch den Schaltkontakt ermittelt. Der Schwebekörper wird durch eine Feder in die Ausgangslage zurückgestellt. Dadurch ist die Einbaulage beliebig. Die Geräte sind kalibriert für den Einbau bei Durchfluss von unten nach oben. Da das Gewicht des Schwebekörpers das Messergebnis beeinflusst, kommt es bei anderen Einbaulagen zu Abweichungen.

4. Montage

4.1. Prozessanschluss

Achtung! Die folgenden Forderungen müssen unbedingt eingehalten werden, sonst wird der Strömungswächter oder die Anlage beschädigt.

- Bauseitig muss ein zum Gerät passender Prozessanschluss vorhanden sein
- Anschlussgröße überprüfen
- Einschraubtiefe überprüfen
- Geeignete Dichtmittel verwenden (flüssige Dichtmittel beschädigen den Strömungswächter, wenn sie hineinlaufen)
- · Fachgerecht abdichten

4.2. Umgebungsbedingungen

- Der Strömungswächter darf nicht als tragendes Teil in Rohrkonstruktionen verwendet werden.
- Das Medium darf keine festen K\u00f6rper mit sich f\u00fchren. Magnetische Partikel reichern sich am magnetischen Schwebek\u00f6rper an und beeintr\u00e4chtigen die Funktion.
- Korrosions- und Frostschutzmittel vor dem Einsatz auf Verträglichkeit prüfen.

Warnung! Die folgenden Forderungen müssen eingehalten werden, sonst wird die Funktion des Strömungswächters beeinträchtigt oder Messergebnisse werden verfälscht.

- Externe Magnetfelder beeinflussen den Schaltkontakt. Zu Magnetfeldern (z.B. Elektromotoren) ausreichend Abstand einhalten.
- Rohre, Prozessanschlüsse oder Halterungen aus ferromagnetischem Material beeinflussen das Magnetfeld des Strömungswächters. Zu solchen Materialien (z.B. Stahl) einen Abstand von 100mm einhalten.
- Querschnittänderungen, Abzweigungen oder Bögen in den Rohrleitungen beeinflussen die Messgenauigkeit. Vor dem Gerät eine Beruhigungsstrecke von 10 x DN, hinter dem Gerät 5 x DN vorsehen. Niemals direkt vor dem Gerät den Rohrdurchmesser reduzieren!
- Bei flüssigen Medien durch geeignete Maßnahmen die Entlüftung des Geräts sicher stellen!

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

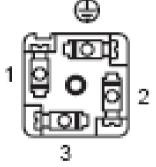
Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

5. Elektrischer Anschluss

Die in den Geräten eingesetzten Schaltkontakte sind potentialfrei und benötigen keine Spannung.

Achtung! Schaltkontakt und Gerät sind aufeinander abgestimmt. Nach dem Austausch eines Schaltkontaktes muss dieser neu justiert werden. Fordern Sie bitte die entsprechende Montageanleitung an!

Zustand des Kontakts bei Gerät ohne Durchfluss:


Anschlussbild Schließer DIN 43650

Anschlussbild Wechsler DIN 43650

5.1. Standard Schaltkontakt

Anschlussbild der mitgelieferten Steckdose (DIN 43650 Form A oder C). Der Erde-Anschluss ist nicht genutzt.

Wichtiger Hinweis:

Die Schutzart IP67 bei Verwendung der Steckerdose DIN 43650 ist nur in Verbindung mit geeigneten Kabeldurchmessern gewährleistet. Informationen hierzu finden Sie auf Seite 9.

5.2. Schaltkontakt mit Kabel

Die Adern des Anschlusskabels sind entsprechend dem obigen Anschlussbild nummeriert.

5.3. Sonderbauformen

Auf Wunsch werden Schaltkontakte in Sonderbauformen (Stecker, vorkonfektioniertes Kabel) geliefert.

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

5.4. EEx-geprüfte Schaltkontakte

Achtung!

Für den Anschluss EEx-geprüfter Schalteinheiten gelten spezielle Vorschriften, die unbedingt eingehalten werden müssen! Beachten Sie die Hinweise in der gesonderten Betriebsanleitung für EExgeprüfte Schaltkontakte!

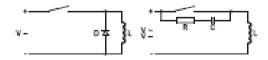
5.5. Kontaktschutzmaßnahmen

Achtung! Die folgenden Forderungen müssen unbedingt eingehalten werden, sonst wird der Schaltkontakt zerstört!

Die in den Schaltkontakten verwendeten Reedkontakte sind konstruktionsbedingt sehr empfindlich gegen Überlast. Keiner der Werte Spannung, Strom oder Leistung darf überschritten werden (auch nicht kurzzeitig).

Eine Gefahr der Überlastung besteht durch:

- Induktive Lasten
- Kapazitive Lasten
- Ohmsche Lasten


Induktive Belastung

Die Belastungsform wird verursacht z.B. durch

- · Schütze, Relais
- Magnetventile
- Elektromotoren

Gefahr: Spannungsspitzen beim Ausschalten (Bis zum 10fachen der Nennspannung)

Schutzmaßnahmen: (Beispiele)

Kapazitive Belastung

Diese Belastungsform wird verursacht z.B. durch:

- Lange Anschlussleitungen
- Kapazitive Verbraucher

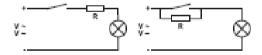
Gefahr: Hohe Stromspitzen beim Einschalten des Schaltkontakts (Überschreitung des Nennstroms)

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

Schutzmaßnahme: (Beispiel)

Begrenzung des Stroms durch einen Widerstand


Ohmsche Belastung

Diese Belastungsform wird verursacht z.B. durch

- Glühlampen
- Anlaufende Motoren

Gefahr: Hohe Stromspitzen beim Einschalten des Schaltkontakts, da die Glühwendel bei niedrigen Temperaturen einen geringeren Widerstand hat.

Schutzmaßnahme: (Beispiele)

Begrenzen des Stroms durch einen Widerstand oder Beheizen des Glühwendels

Anschluss an SPS

Für den Anschluss an hochohmige Verbraucher (z.B. SPS) ist eine Schutzbeschaltung nicht notwendig.

6. Einstellung des Schaltpunkts

- Die Feststellschraube des Schaltkontakts lösen und den Schaltkontakt bis zum Anschlag gegen die Durchflussrichtung verschieben. Der Schaltkontakt sollte nun geschlossen sein.
- Den gewünschten Durchfluss vorgeben. Ist der Stömungswächter nicht eingebaut, mit einem nicht-magnetischen Stab (z.B. Bleistift) den Schwebekörper mit dem gewünschten Durchfluss auf der Skala zur Deckung bringen (Oberkante des Schwebekörpers = Ablesekante)
- Den Schaltkontakt in Durchflussrichtung verschieben, bis der Kontakt öffnet.
- Die Feststellschraube des Schaltkontakts wieder anziehen.

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

Hinweise

- Der eingestellte Schaltpunkt entspricht dem Abschaltpunkt des Schaltkontakts bei fallendem Durchfluss.
- Der aktuelle Zustand des Schaltkontakts kann z.B. mit einem Durchgangsprüfer festgestellt werden.
- Die Zustände des Schaltkontakts beziehen sich auf den Schließer (N.O.).

7. Wartung und Pflege

Aufgrund der geringen Anzahl beweglicher Teile sind die Geräte sehr wartungsarm.

Eine regelmäßige Funktionskontrolle und Wartung erhöht allerdings nicht nur die Lebensdauer und Funktionssicherheit des Geräts, sondern der ganzen Anlage.

Die Wartungsintervalle sind abhängig von

- · Der Verschmutzung des Mediums
- Umgebungsbedingungen (z.B. Vibrationen)

Bei der Wartung müssen mindestens folgende Punkte geprüft werden:

- Funktion des Schaltkontakts
- Dichtigkeit des Geräts
- · Gängigkeit des Schwebekörpers

Es obliegt dem Betreiber, abhängig vom Anwendungsfall, geeignete Wartungsintervalle festzulegen.

Hinweise

- Die Gängigkeit des Schwebekörpers und die Funktion des Schaltkontakts kann überprüft werden, indem der Durchfluss verändert und der Schaltzustand des Schaltkontakts überwacht wird.
- Zur Reinigung genügt in den meisten Fällen ein Durchspülen mit sauberem Medium. In hartnäckigen Fällen (z.B. Kalkablagerungen) kann mit handelsüblichen Reinigern, sofern diese die Werkstoffe des Geräts nicht angreifen, gereinigt werden.

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

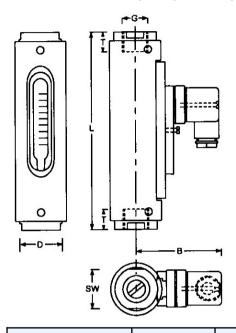
8. Hinweise zur Fehlersuche

Der Schaltkontakt schaltet nicht.

- Der Schaltkontakt ist ständig im Ruhezustand.
 - 1. Kein Durchfluss
 - Überprüfen, ob tatsächlich Medium fließt.
 - 2. Durchfluss zu gering oder Schaltkontakt zu hoch eingestellt
 - Den Schaltkontakt auf geringeren Durchfluss einstellen.
 - Ein Gerät mit anderem Messbereich verwenden.
 - 3. Falsch reduziert (zu kleiner Leitungsquerschnitt)
 - ► Gemäß Abschnitt 4 reduzieren
 - 4. Schwebekörper klemmt (Verschmutzung)
 - Das Gerät reinigen und den Schwebekörper gangbar machen.
 - 5. Schaltkontakt defekt
 - ▶ Die Ursache des Defekts beseitigen (Kurzschluss, Überlastung)
 - ▶ Den Schaltkontakt austauschen, s. Punkt 5
- Der Schaltkontakt ist ständig geschaltet.
 - 1. Durchfluss zu hoch oder Schaltkontakt zu niedrig eingestellt
 - ▶ Den Durchfluss reduzieren
 - ▶ Den Schaltkontakt auf einen höheren Durchfluss einstellen
 - Schwebekörper klemmt (Verschmutzung)
 - Das Gerät reinigen und den Schwebekörper gangbar machen
 - 3. Schaltkontakt defekt
 - ▶ Die Ursache des Defekts beseitigen (Kurzschluss, Überlastung)
 - ▶ Den Schaltkontakt austauschen, s. Punkt 5
- Der Schaltpunkt stimmt nicht mit dem tatsächlichen Durchfluss überein.
 - Keine medienspezifische Skala
 - ► Eine Umrechnungstabelle oder eine medienspezifische Skala anfordern
 - 2. Falsch reduziert
 - Gemäß Abschnitt 4 reduzieren
 - 3. Gerät verschmutzt
 - Das Gerät reinigen
 - 4. Gerät defekt
 - ▶ Das Gerät zur Reparatur/Kalibrierung einsenden

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten


9. Spezifikationen

Betriebsdaten	DUG						
Betriebsdruck	PN 10 bar						
Druckverlust	0,02 – 0,5 bar						
Temperatur max.	100°C						
Messgenauigkeit	±5% vom Endwert						
Elektrische Daten	Schließer	Wechsler					
IP65 (Gerätestecker DIN43650 Form A oder C)	Max. 250V • 3A • 100VA	Max. 250V • 1,5A • 50VA (1)					
IP67 (1m angegossenes Kabel)							
Atex II 2G EEx m II T6 max. 80°C (2m angegossenes Kabel IP67)	Max. 250V • 2A • 60VA	Max. 250V • 1A • 30VA					
EEx m II T6 max. 80°C	Max. 250V • 2A • 60VA	Max. 250V • 1A • 30VA					
Ausgangssignal	Der Schaltkontakt schaltet ab, wenn der eingestellte Durchfluss unterschritten wird.						
Spannungsversorgung	Nicht erforderlich						
Kabeldurchmesser für IP65	6 – 8 mm						
Verschmutzungsgrad	2 (EN 61058-1)						
Andere Steckertypen oder Kabellängen auf Anfrage							
Werkstoffe	Messing	Edelstahl					
Medienberührende Teile	Messing	1.4571					
Feder (medienberührend)	1.4571						
Schauglas (medienberührend)	Duran 50						
Dichtungen	NBR (andere auf Anfrage) Viton (andere auf Anfra						
Gehäuse (nicht medienberührend)	Aluminium eloxiert						

Einbau- und Betriebsanleitung Strömungsanzeiger / Strömungswächter DUG

Durchflussanzeiger / Durchflusswächter nach dem Schwebekörperprinzip zur Überwachung von Flüssigkeiten

	sw	D	В	G	DN	Т	L
DUG- 4-14	32	42	67	1/4" 1/2"	8 15	14 15	132 135
DUG- 28	32	42	67	1/2"	15	15	135
DUG- 45	32	42	67	3/4"	20	18	167
DUG- 80-90	41	50	75	³ / ₄ " 1"	20 25	18 19	164 184
DUG- 110	41	50	75	1"	25	19	184
DUG- 150	50	55	77	1¼"	32	21	222
DUG- 220	55	60	80	1¼"	32	21	210
DUG- 250	50	55	77	1¼"	32	21	222

Abmessungen in mm